
 

 

  
Abstract—For various models of three-dimensional fluid which 

describe the flows in the Atmosphere and the Ocean, we find a 
relation between the essential spectrum of normal vibrations of 
internal waves and non-uniqueness of the limit amplitude of 
vibrations induced by external mass forces. We consider the both 
cases of incompressible and compressible and fluid and find a new 
mathematical description of the resonance of the internal waves. 
Since all the considered models correspond to of the stratified density 
in a homogeneous gravitational field, the obtained results may find 
their application in the study of the Atmosphere and the Ocean.  
 

Keywords—Turbulence and multiphase flows, computational 
fluid dynamics, compressible flows, internal waves, spectral theory, 
uniqueness of mathematical solutions, stratified flows.  

I. INTRODUCTION 

 
ET us consider a bounded domain 3RΩ ⊂  with the 
boundary ∂Ω  of the class 1C and the following system of 

fluid dynamics 
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   Here ( )1 2 3, ,u u u u=
  is a velocity field, ( , )p x t  is the scalar 

field of the dynamic pressure and  ( , )x tρ  is the dynamic 
density. In this model, the stationary distribution of density is 
described by the function 3Nxe− , so N is a positive constant.        

We also suppose that ω  is a positive constant so that the 
system (1) describes linear motions of incompressible 
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stratified inviscid fluid which is rotating over the vertical axis 
with a constant angular velocity ( )0,0,ω ω=

 . 
The equations (1) are deduced in  [1]-[3].  
The fundamental solution of internal waves in stratified flows 
was first constructed in [4]. Particularly, it is easy to see that 
the system (1) with the parameter 0ω = is equivalent to the 
scalar equation 

2 2 2
2

2 2 2
1 2

0u uu N
t x x

 ∂ ∂ ∂
∆ + + = ∂ ∂ ∂ 

, 

and it was proved in [4] that the singular (fundamental) 
solution of the last equation has the form 

( ) ( )0
3 0

1, ,
4

E x t J d
x

η

α α
π

= ∫  

where 0J  is  Bessel function of order zero and 3x Nt
x

η = . 

For the model of the stratified fluid, the stationary distribution 
of density takes the form of an exponentially decreasing 
function of the altitude (which, in fact is the Boltzmann-type 
distribution), thanks to the homogeneous gravity force. If we 
introduce some disturbance at the initial moment, then, in 
order to re-establish the initial stationary distribution of 
density, the action of the gravity force will result in appearance 
of the internal waves in the fluid which are described 
mathematically by various expressions which involve the 
above singular solution ( ), .E x t   

The solution for a Cauchy problem for the system (1), was 
constructed in [5], where it was proved that 
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3
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It can easily be seen that the solution of the Cauchy problem 
for stratified fluid is closely related to the function  

( )0 0
1 1 cosV J t J t
r r r

ρ θ= = 
 

. 

Let us discuss the conduct of the function V as a function of t. 
We consider a sphere of a constant radius. On the sphere,  for 
every t , the function V  depends only on the polar angle θ. The 
argument of the Bessel function on the sphere changes from 0 
to t . With  t growing, we will have more and more waves 
generated by maxima and minima of the Bessel function, all of 
them situated between the pole and the equator of the sphere. 
The waves will appear on the pole and then will move towards 
the equator, accumulating but not disappearing. Thus large 
waves will generate more and more short ones. For rotating 
non-stratified fluid (with the parameter 0N = ), the singular 
solution was constructed in [6]: 
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Comparing the singular solutions for the corresponding models 
of stratified and rotating fluids, we can express certain 
conjecture of similarity of behavior of inner waves in both 
cases. From the mathematical point of view, we would like to 
compare the interaction of the external induced vibrations and 
the proper inner oscillations of the waves in the model where 
the stratification and the rotation are considered 
simultaneously. Particularly, we would like to describe the 
conditions and the properties of the resonance effect caused by 
the exterior induced vibrations.   

II. STATEMENT OF  THE  PROBLEM AND PRELIMINARIES 
 
 We will study first the spectrum of the operators generated by 
the system (1). Let us consider the system (1) with the 
boundary condition 
 

      0u n ∂Ω⋅ =
  .                            ( 2 ) 
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            ( 3 ) 

 
Without loss of generality, we put 1g = , denote ( )4 5, ,v v v v=



  
and write (1)  as 

                           0 ,Lv =                                     ( 4 ) 
 

where 4L M Iλ= −  and         
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We define the domain of the differential operator M  as 
follows.  

( )( ) ( )
( ) ( ) ( )

( ) ( )
3
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We observe first that the operator M is a closed operator, and 

its domain is dense in ( )( )5
2L Ω . 

Let us denote by ( )ess Mσ  the essential spectrum of the linear 
operator M. Let us recall that the essential spectrum  

( ) ( ){ }:  is not of Fredholm type ,ess M C M Iσ λ λ= ∈ −  
is composed of the points which belong to the continuous 
spectrum, limit points of the point spectrum and the 
eigenvalues of infinite multiplicity [7], [8].  
Therefore, every spectral point outside of the essential 
spectrum, is an eigenvalue of finite multiplicity.  
To find the essential spectrum of the operator M , we use the 
following property which is attributed to Weyl [8], [9]: a 
necessary and sufficient condition that a real finite value λ  be 
a point of the essential spectrum of a self-adjoint operator M  
is that there exist a sequence of elements ( )nv D M∈  such that 
 
           ( )1 ,   0 weakly,  and  0 .n n nv v M I vλ= → − →                  

Evidently, the operator M is skew-selfadjoint and its spectrum 
belongs to the imaginary axis. 

   Theorem 1.  

 Let { } { }min ,  ,  max ,a N A Nω ω= = . Then, the essential 
spectrum of M  is the following symmetrical set of the 
imaginary axis: 
 

          { }0 [ , ] [ , ]iA ia ia iA∪ − − ∪ .                  ( 6 )                                                              
 
Moreover, the points { } { } { }0 , ,ia iA± ± are eigenvalues of 
infinite multiplicity. 
 

 

 

Proof. 
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   For the operator L defined in (4), we observe that the main 
symbol ( )L ξ  takes the following form: 
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and thus 
 

( ) ( ) ( ) ( )2 2 2 2 2 2 2
1 2 3det L Nξ λ λ ξ ξ λ ω ξ = + + + + 

 .   ( 7 ) 

 
We can see from (7) that if  

{ } ( ) ( )0 , ,iA ia ia iAλ ∉ ∪ − − ∪   , 
then the operator L  is elliptic in sense of Douglis-Nirenberg.  

Using (7), we consider ( ) { }0 , \ 0ia iAλ ∈ ±  and choose a vector 
0ξ ≠  such that 

( ) ( ) ( )2 2 2 2 2 2 2
0 1 2 0 3 0Nλ ξ ξ λ ω ξ+ + + + = . 

Therefore, there exists the vector η  such that 
 

                                    ( ) 0L ξ η = .                                 ( 8 ) 
 
After solving (8) with respect to η  , we obtain one of possible 
solutions: 
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We observe that 0 ,  1, 2,3, 4,5.i iη ≠ =  Now, we choose a 

function ( ) ( )2
0 0 0

1
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∈ Ω =∫  Let us fix 0x ∈ Ω  and 

put 
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          ( 9 ) 

 
It is easy to verify that the sequence (9) satisfies  the Weyl 
criterion, the details are analogous to the corresponding result 
in [10].   

Let us investigate now the structure of the boundary points of 
the essential spectrum.  For 0λ = , the system (4) takes the 
form 
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. 

As it can be easily verified, every vector-function of the type 

( )0
2 1 3

1 1 1, ,0, ,  ,  v C
x x N x
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ω ω
∞ − ∂ ∂ − ∂
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, 

satisfies the last system, and therefore  0λ = is an eigenvalue 
of infinite multiplicity. 
Since the essential spectrum of a linear operator is always a 
closed set, the points { } { },ia iA± ± , belong to it. These 
boundary points are also eigenvalues of infinite multiplicity. 
Let us consider, for example, the case  , iN Nλ ω= > .  
Then, the system (4) transforms into 

5
1 2

1

5
1 2

2

5
3 4

3

3 4

0

0

0

0
div 0
              

viNv v
x

vv iNv
x

viNv Nv
x

Nv iNv
v

ω

ω

∂− − + = ∂
∂ − + = ∂ ∂− + + = ∂


− − =

 =




. 

As it can be seen, any vector function of the form  
( ) ( )( )1 2 1 2 00,0, , , , ,0  ,  x x i x x Cϕ ϕ ϕ ∞∈ , 

satisfies the last system and thus the theorem is proved. 
 
Now, let us consider the following non-homogeneous system 
corresponding to system (1): 
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  .                          ( 10 ) 

Here ( ),F x t


 represents mass forces acting on the fluid, and B 
is a matrix operator which defines the model: 

                               ( )
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We consider the Cauchy problem for the system (10) for the 
case when the right-hand side ( , )F x t



 depends on time 
harmonically, i.e.    

0
0( , ) ( )   ,  0i tF x t f x e λ λ−= ≥




. 
From the physical point of view, for this case, the solution of 
the Cauchy problem should stabilize and describe the mode of 
the induced vibrations with frequency 0λ . 
 
   Theorem 2.  

 
Let the exterior mass force be a periodic function with 
frequency 0 0λ ≥ :       

                         0( , ) ( )  i tF x t f x e λ−=




. 
Then, the solution ( ),v x t  of the Cauchy problem for (10) is 

also periodic and  the following stabilization property is valid: 
( ) ( )0lim , ,i t

t
e v x t U xλ

→∞
=


  

where ( )U x


 is the solution of the stationary system with the 

external force ( )f x


. 
 
The proof of the above statement of stabilization for the case 
of rotating fluid may be found in [11]. In [12], the analogous 
result was proved for stratified fluid. The proof of Theorem 2 
for the general case of rotating stratified fluid is similar to the 
corresponding proof in [12]. Following the traditionally 
accepted terminology, we will call the function ( )U x



 the limit 
amplitude of the stabilized induced vibrations. 
Our next objective is to compare the uniqueness of the limit 
amplitude ( )U x



 and the variation of the values of the 
frequency of external vibrations 0λ  with respect to the 
essential spectrum of normal vibrations of the fluid. 
 

III. ON THE UNIQUENESS OF LAPLACE AND WAVE EQUATIONS 

IN ( )3
pL R  

 
 Theorem 3.  

Let ( )3  ,  1 .pu L R p∈ ≤ < ∞  If ( )u x  is a solution of the 
Laplace equation  
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0u u u
x x x

∂ ∂ ∂
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in 3R , then ( ) 0u x =  almost everywhere. 
 
Proof. 
From Schwartz theorem  [13], we obtain that for ( )3

pu L R∈  
every linear functional 

( ) ( )
3R

u x x dxφ∫ ,  Sφ ∈ , 

is an element of S ′ .  
After applying the Fourier transform to (11), we have      
                           ( )2 2 2

1 2 3 ˆ 0uξ ξ ξ+ + = ,                          

where û  is the Fourier image of u . 
In this way, the support of ( )û ξ  consists of one only point 
{0}. Then, from the theory of generalized functions  [14] we 
have 

( ) ( )ˆ
N

u C Dα
α

α

ξ δ ξ
≤

= ∑ , 

from which it follows that 
( )

N

u x C xα
α

α ≤

′= ∑ . 

In other words, u is a polynomial of x. 
Since  ( )3

pu L R∈  , we finally have ( ) 0u x =  almost 

everywhere in 3R  and thus the theorem is proved. 
 
Theorem 4.  

Let ( ) ( )331  ,   
2 pp f x L R< < ∈ . Then, the solution of the 

Poisson equation in 3R  

                       ( )
2 2 2

2 2 2
1 2 3

u u u f x
x x x

∂ ∂ ∂
+ + =

∂ ∂ ∂
,                       ( 12 ) 

belongs to the class of uniqueness ( )3  ,  3qL R q< < ∞ . 
 
Proof. 
 
The singular (fundamental) solution of the Laplace equation in 

3R  is the function ( ) 1
4

E x
xπ

= − .   

We will use the following property [16]: in nx R∈ , the 
solution of the equation Lu f= is unique in the class of 
functions for which there exists the convolution E f∗ . 
Therefore, from theorem 3 we obtain that the solution of (12) 

( )u x   is performed by 

( ) ( )
3

1
4 R

f x
u x dy

x yπ
−

=
−∫ . 

From Hardy-Littlewood inequalities [15] and Sobolev 
inequalities for integrals of potential type [6], it follows  that 
for 31 2p< < , 3 q< < ∞ , the property holds: 

( ) ( )3 3
q pL R L Ru C f≤ , 

where p and q satisfy the relation 1 1 2
3q p

= − .  

In this way, the theorem is proved. 
 
Now,  let us consider the following norm in the non-isotropic 
space ( )3

pL R , ( )3, ,p p p p=
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f f x dx dx x x x
   ′ ′= =     

∫ ∫
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The proof of the following theorem is similar to [17], [12], 
though the original model is different. 
 
Theorem 5.  

Let ( )u x  be a solution of the wave equation in 3R  

                
2 2 2

2 2 2
1 2 3

0u u u
x x x

∂ ∂ ∂
+ − =

∂ ∂ ∂
                    ( 13 ) 

such that ( ) ( ) ( )3  ,  , , 2  , 4 .pu x L R p p p p∈ = < < ∞

  
Then, there exist nonzero solutions of (13) in the  considered 
class of functions. 
 
Proof. 
 
We consider the Fourier transform in 3x : 

3xF ξ→ . 

It can be easily seen that for arbitrary ( )A ξ , the function 

( ) ( ) ( )0,v x A J xξ ξ ξ′ ′=  for almost every 1Rξ ∈ , satisfies 
the Helmholtz equation 

                        
2 2

2
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0v v v
x x

ξ∂ ∂
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where 2 2
1 2x x x′ = +  and ( )0J rξ  is the Bessel function of 

order zero which is the solution of the Bessel equation  
2 2 2 0r v rv r vξ′′ ′+ + = . 

We choose an arbitrary function ( ) ( )1
0A C Rξ ∞∈  such that 

( ) 0A ξ ≡  for 1ξ ≤ ,  and  ( ) 0A ξ ≠  in a set of non-zero 

measure in 1R . 
In this way, the function  

                                  ( ) ( ) 3

1

1 ,
2

ix

R

u x v x e dξξ ξ
π

−′= ∫                                   

represents a non-trivial solution of (13). 
By Hausdorff-Young inequality for Fourier transforms [18], 
We have that the estimate holds: 

( ) ( )1 1
2 23xL R L Ru C v

ξ
≤ . 

In this way, we obtain the inequality 

( ) ( ) ( ) ( )
1 1

2 22 23x
p p

L R L R
L R L R

u C v
ξ
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Since  ( )0
1

p
J r rdrξ

∞

< ∞∫   for  4p > ,  then the norm in the 

right side of the last relation is finite. 
Finally, we have the estimate ( ) ( )3  ,   , , 2

pL Ru p p p< ∞ =


  and 

thus the theorem is proved. 
 
Remark 1. 
 

For the results concerning the structure and the localization of 
the essential spectrum, instead of the system (1), we can also 
consider the corresponding model for compressible fluid: 
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S 

In this case, the operator L in (4) will take the form 
5L M Iλ= −  

 where  

5

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

I




=



 
 

    

4

1 0 0 0 0
0 1 0 0 0

 .0 0 1 0 0
0 0 0 1 0
0 0 0 0 0

I




=



 
 

 From the definition of the ellipticity in sense of Douglis-
Nirenberg [19], we have that, for the operator 5L M Iλ= −  it 
is possible  to consider the main symbol of the operator  L  as 
the main symbol of the operator 4M Iλ− , 
Indeed, from the definitions in [19], [20] for calculating the 
main symbol, in this case we can assume ( )5 55

0M Iλ− = . 
Therefore, the main symbol of  L  will coincide with the main 
symbol of the operator 4M Iλ−  and thus the considered 
spectral results obtained in for incompressible fluid, can be 
easily extended to the case of the compressible fluid.  
 
Remark 2. 
 
For the model which counts with salinity and heat transfer, the 
operator B in (10) acts on 5-dimensional vector:  

( )4 5 4 5

3

3

0
0

, ,  B v v v v v
v
v

α β
α
β




= − −



 
 

 , 

where 4v  is the temperature of the fluid, and 5v  is the salinity. 
The equations of this model are deduced in [21], and the 
spectral properties for viscous fluid were studied in [22]. From 
the explicit form of the operator B we can conclude, without 
loss of generality, that the spectral results for inviscid fluid 
considered in section II of this paper, are also valid for the 
flows modeling salinity and heat transfer. 
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IV. UNIQUENESS AND NON-UNIQUENESS OF THE LIMIT 
AMPLITUDE AND THE RESONANCE EFFECT 

 

We will use here the notations from theorem 2.  

For the model of rotating fluid, it was proved in [11] that, if 
the frequency of the external vibrations 0λ  was close to ω , 
then the limit amplitude ( )U x  assumed unbounded growth. In 
this paper, we would like to present a different description of 
the resonance effect. Particularly, for rotating stratified fluid, 
as well as for the models of salinity and heat transfer, we will 
show that there exists an explicit relation between the 
belonging of  0λ  to the essential spectrum of normal inner 
vibrations, and the non-uniqueness of the limit amplitude.  

By consecutive differentiation and corresponding substitution, 
it can be easily verified that non-homogeneous system (1)  is 
equivalent to the scalar equation 

( )
2 2 2 2 2 2 2

2 2
2 2 2 2 2 2 2

1 2 3 1 2 3

, .v v v v v vN F x t
t x x x x x x

ω
  ∂ ∂ ∂ ∂ ∂ ∂ ∂

+ + + + + =  ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
 

We put   0( , ) ( )  i tF x t f x e λ−= and use the periodicity of the 
stabilized solution from theorem 2: ( ) ( ) 0, i tv x t u x e λ−= .  
In this way, we obtain the following equation: 

( ) ( ) ( )
2 2 2

2 2 2 2 3
0 02 2 2

1 2 3

, .u u uN f x x R
x x x

λ ω λ
 ∂ ∂ ∂

− + + − = ∈ ∂ ∂ ∂ 
( 14 ) 

Evidently, the function ( )U x  from theorem 2 which is the 
limit amplitude of the induced oscillations of the external 
forces with frequency 0λ , is a solution of the equation of the 
stabilized vibrations (14). 

We observe that the equation (14) can be also obtained from 
the expression of the mail symbol (7). 

Let us express the homogeneous equation (14) as follows. 
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x x xN
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We consider first the case when the external frequency does 
not belong to the essential spectrum of normal vibrations 

{ } { } { }0 [ , ] [ , ]  ,  min ,  ,  max , .A a a A a N A Nλ ω ω∉ − − ∪ = =  

The last term in (15) satisfies the estimate
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2 2
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0
N
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λ

−
>

−
 and 

thus, by a contraction of the axis 3x  , the equation (15) can be 
transformed to the Laplace equation (11). 

Let us consider ( ) ( )1 3
1f x W R∈ . We note that from Sobolev 

inclusion theorems [6] for 31
2

p< <   the property holds: 

( ) ( )1 3 3
1 pW R L R⊂ . 

From theorems 3 and 4 we obtain that the solution of the 
equation 
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2 2 2
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u u u f x
x x x
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is unique, and for  ( ) ( )1 3
1f x W R∈  belongs to the class of 

uniqueness  ( )3  ,  3qL R q< < ∞ . 

Now we consider the case  when 0λ  belongs to the essential 
spectrum of normal vibrations: 

{ } { }{ }0 , ,  .A a a Aλ ∈ − − ∪  
For this case, we have the property 

( )
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2 2
0

2 2
0

0
N

ω λ

λ

−
<

−
, 

and therefore, by a transform of linear contraction of the axis 
3x  , the equation (15) can be transformed into the wave 

equation (13). 

The singular solution of (13) is 

( )
2 2 2
1 2 3

1
4

E x
x x xπ

= −
+ −

. 

In this way, the solution of the non-homogeneous equation 
2 2 2

2 2 2
1 2 3

( )u u u f x
x x x

∂ ∂ ∂
+ − =

∂ ∂ ∂
, 

is performed by the function 

( ) ( )
( )

( )
3

1 222
3 3

1  ,  ,
4 R

f y dy
U x x x x

x y x yπ
− ′= =

′ ′− − −
∫ . 

Again, let ( ) ( )1 3
1f x W R∈ . Using Minkovsky inequality, 

Sobolev inclusion theorems and the properties of the integrals 
of potential type [6], we obtain the estimate 

( ) ( ) ( )3 1 3
1

 ,   , , 2  ,  4 .
pL R W RU C f p p p p≤ = < < ∞


  

Therefore, the assumptions for the theorem 5 are fulfilled, and 
we have that the limit amplitude ( )U x  is not unique. 
Moreover, it belongs to  

( ) ( ) ( )3  ,  , , 2  , 4 ,pu x L R p p p p∈ = < < ∞

  

which is the class of non-uniqueness of the equation (13). 

We note that the established non-uniqueness of the limit 
amplitude of induced vibrations for the case when the external 
frequency belongs to the essential spectrum of proper normal 
vibrations, can be interpreted as a new mathematical 
description of the resonance effect of inner waves. 

Now, we can sum up the results of this section as the following 
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statement. 

 

Theorem 6. 

Let ( ) ( )1 3
1f x W R∈ .  Then, for the models of rotating 

stratified fluid, as well as for the models for salinity, humidity 
and heat transfer, for both incompressible and compressible 
fluid, the limit amplitude of oscillations which are induced by 
the external mass forces of the type  

0( , ) ( )  i tF x t f x e λ−=  
is unique when the external frequency 0λ  is outside of the 
essential spectrum of the proper normal vibrations. This limit 
amplitude belongs to the class of uniqueness of the equation 
(12) 

( )3  ,  3qL R q< < ∞ . 

On the other hand, if the external frequency 0λ  belongs to the 
essential spectrum of normal vibrations, then the limit 
amplitude is not unique and belongs to the class of non-
uniqueness of the equation (13) 

( ) ( )3  ,  , , 2  , 4 .pL R p p p p= < < ∞

  

 

Remark 3. 

 

The Weyl sequence (9) from theorem 1, evidently, is not 
unique as a result of an arbitrary selection of the function 0ψ . 

Due to the property   ( ) 0nM I vλ− →  it can also be 
interpreted as an explicit example of non-uniqueness of the 
solution. 

V. CONCLUSION 
 
Traditionally, the resonance effect has been considered 
mathematically as an unbounded growth of the amplitude as a 
result of the superposition of the external vibrations and the 
proper vibrations of the system. However, for the considered 
models of rotating stratified fluid as well as for the models 
counting with humidity, salinity and heat transfer, rather than 
the growth of the solution, there may be valid one more 
mathematical tool to describe the resonance: uniqueness and 
non-uniqueness of the limit amplitude.  
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